e-GS Series
Geothermal version

4" SUBMERSIBLE
ELECTRIC PUMPS
APPLICATIONS

- Open loop geothermal systems

MARKET SECTORS

RESIDENTIAL.

SPECIFICATIONS

PUMP

- **Delivery:** up to 10,8 m³/h at 2900 rpm.
- **Head:** up to 26,3 m at 2900 rpm.
- **Maximum pump overall diameter (cable cover included):** 99 mm.
- **Maximum immersion depth:**
 - 150 m (with 4OS motor).
 - 300 m (with L4C motor).
- **Maximum permissible quantity of sand:** 150 g/m³.
- **1GSL - 2GS - 4GS - 6GS versions:**
 - Rp 1 1/4 delivery port.
- **8GS version:**
 - Rp 2 delivery port.
- **Motor power:** 0,37 kW.

MOTOR

- Motor with built in capacitor (2W = Two Wires)
- **4OS single-phase version:**
 - 0,37 kW 220-240 V, 50 Hz.
- **4OS three-phase version:**
 - 0,37 kW 380-415 V, 50 Hz.
- **L4C single-phase version:**
 - 0,37 kW 220-240 V, 50 Hz.
- **L4C three-phase version:**
 - 0,37 kW 380-415 V, 50 Hz.
- **Maximum supply voltage variations:**
 - ±10% (4OS)
 - ±6% (L4C).
- **Maximum number of starts for hour evenly distributed:**
 - 30 (4OS)
 - 40 (L4C)
- **Maximum temperature of water in contact with motor:** 35°C

CONSTRUCTION CHARACTERISTICS

PUMP

- Abrasion-resistant construction.
- The front wear ring, combined with the floating impellers, ensures optimum resistance to sand abrasion.
- The upper and lower supports are made of precision-cast stainless steel, ensuring resistance to corrosion, durability and a sturdy coupling to the motor.
- The hexagonal pump shaft guarantees an effective impeller driving.
- Stainless steel non-return valve integrated in the head
- The e-GS series pumps can be coupled to either the 4OS or L4C motors.

MOTOR

For the motor features, please refer to the specific technical brochures.

OPTIONAL FEATURES

- Different voltages and frequencies.
- Cooling sleeves
e-GS SERIES - GEOTHERMAL VERSION
IDENTIFICATION CODE (PUMP)

Flow rate
[6] = 6 m³/h

Name
(GS) = e-GS serie
(GSL) = e-GSL series

Motor power kW x 10

Version
[Null] = 50 Hz
[6] = 60 Hz

EXAMPLE: 6GS03/B GEO
6 = Nominal flow 6 m³/h
GS = e-GS Series
03 = Motor power 0,37 kW
Null = 50 Hz
Null = Standard number of stages
/B = Version
GEO = Geothermal version

EXAMPLE: 1GSL03T-4OS GEO
1 = Nominal flow 1 m³/h
GSL = e-GSL Series
03 = Motor power 0,37 kW
Null = 50 Hz
Null = Standard number of stages
T = Power supply three-phase
Null = standard Version
L4C = Motor L4C
GEO = Geothermal version
e-GS SERIES - GEOTHERMAL VERSION
OPERATING CHARACTERISTICS AT 50 Hz

<table>
<thead>
<tr>
<th>PUMP TYPE</th>
<th>N. OF STAGE</th>
<th>MOTOR POWER</th>
<th>MEI (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1GSL03</td>
<td>4</td>
<td>0.37, 0.50</td>
<td>0.4</td>
</tr>
<tr>
<td>2GSL03</td>
<td>4</td>
<td>0.37, 0.50</td>
<td>0.4</td>
</tr>
<tr>
<td>4GSL03</td>
<td>4</td>
<td>0.37, 0.50</td>
<td>0.4</td>
</tr>
<tr>
<td>6GSL03</td>
<td>3</td>
<td>0.37, 0.50</td>
<td>0.4</td>
</tr>
<tr>
<td>8GSL03</td>
<td>3</td>
<td>0.37, 0.50</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Q = DELIVERY

<table>
<thead>
<tr>
<th></th>
<th>0.3</th>
<th>0.4</th>
<th>0.7</th>
<th>1.0</th>
<th>1.3</th>
<th>1.4</th>
<th>1.7</th>
<th>1.8</th>
<th>2.1</th>
<th>2.4</th>
<th>2.6</th>
<th>3.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>m3/h</td>
<td></td>
</tr>
<tr>
<td>1GSL03</td>
<td>11.5</td>
<td>6.7</td>
<td></td>
</tr>
<tr>
<td>2GSL03</td>
<td>14.5</td>
<td>10.2</td>
<td></td>
</tr>
<tr>
<td>4GSL03</td>
<td>17.4</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>6GSL03</td>
<td>16.3</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>8GSL03</td>
<td>11.7</td>
<td>9.8</td>
<td></td>
</tr>
</tbody>
</table>

H = TOTAL HEAD METRES COLUMN OF WATER

Hydraulic performances in compliance with ISO 9906:2012 - Grade 3B (ex ISO 9906:1999 - Annex A)

(1) Index of efficiency MEI.

DIMENSIONS AND WEIGHTS

<table>
<thead>
<tr>
<th>ELECTRIC PUMP TYPE</th>
<th>N. OF STAGE</th>
<th>DNM</th>
<th>DIMENSIONS (mm)</th>
<th>WEIGHT (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1GSL03M:.. GEO</td>
<td>4</td>
<td>Rp 1 ⅛</td>
<td>L1</td>
<td></td>
</tr>
<tr>
<td>2GSL03M:.. GEO</td>
<td>4</td>
<td>Rp 1 ⅛</td>
<td>L1</td>
<td></td>
</tr>
<tr>
<td>4GSL03M:.. GEO</td>
<td>4</td>
<td>Rp 1 ⅛</td>
<td>L1</td>
<td></td>
</tr>
<tr>
<td>6GSL03M:.. GEO</td>
<td>3</td>
<td>Rp 1 ⅛</td>
<td>L1</td>
<td></td>
</tr>
<tr>
<td>8GSL03M:.. GEO</td>
<td>3</td>
<td>Rp 2</td>
<td>L1</td>
<td></td>
</tr>
<tr>
<td>1GSL03T:.. GEO</td>
<td>4</td>
<td>Rp 1 ⅛</td>
<td>L1</td>
<td></td>
</tr>
<tr>
<td>2GSL03T:.. GEO</td>
<td>4</td>
<td>Rp 1 ⅛</td>
<td>L1</td>
<td></td>
</tr>
<tr>
<td>4GSL03T:.. GEO</td>
<td>4</td>
<td>Rp 1 ⅛</td>
<td>L1</td>
<td></td>
</tr>
<tr>
<td>6GSL03T:.. GEO</td>
<td>3</td>
<td>Rp 1 ⅛</td>
<td>L1</td>
<td></td>
</tr>
<tr>
<td>8GSL03T:.. GEO</td>
<td>3</td>
<td>Rp 2</td>
<td>L1</td>
<td></td>
</tr>
</tbody>
</table>
These performances are valid for liquids with density $\rho = 1.0 \text{ Kg/dm}^3$ and kinematic viscosity $\nu = 1 \text{ mm}^2/\text{sec}$.
These performances are valid for liquids with density $\rho = 1.0$ Kg/dm3 and kinematic viscosity $\nu = 1$ mm2/sec.
These performances are valid for liquids with density $\rho = 1.0 \text{ Kg/dm}^3$ and kinematic viscosity $\nu = 1 \text{ mm}^2/\text{sec}$.
These performances are valid for liquids with density $\rho = 1.0 \text{ Kg/dm}^3$ and kinematic viscosity $\nu = 1 \text{ mm}^2/\text{sec.}$
These performances are valid for liquids with density $\rho = 1.0 \text{ Kg/dm}^3$ and kinematic viscosity $\nu = 1 \text{ mm}^2/\text{sec}$.
Xylem |ˈzɪləm|

1) The tissue in plants that brings water upward from the roots;
2) a leading global water technology company.

We’re a global team unified in a common purpose: creating advanced technology solutions to the world’s water challenges. Developing new technologies that will improve the way water is used, conserved, and re-used in the future is central to our work. Our products and services move, treat, analyze, monitor and return water to the environment, in public utility, industrial, residential and commercial building services settings. Xylem also provides a leading portfolio of smart metering, network technologies and advanced analytics solutions for water, electric and gas utilities. In more than 150 countries, we have strong, long-standing relationships with customers who know us for our powerful combination of leading product brands and applications expertise with a strong focus on developing comprehensive, sustainable solutions.

For more information on how Xylem can help you, go to www.xylem.com.